Lecture: First Order Logic

Pros and cons of propositional logic

© Propositional logic is declarative

Propositional logic allows partial/disjunctive/negated information
 (unlike most data structures and databases)

Propositional logic is compositional:

 \square meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$

Meaning in propositional logic is context-independent

(unlike natural language, where meaning depends on context)

Propositional logic has very limited expressive power

- (unlike natural language)
- E.g., cannot say "pits cause breezes in adjacent squares"
 - except by writing one sentence for each square

First-order logic

- Whereas propositional logic assumes the world contains facts,
- first-order logic (like natural language) assumes the world contains
 - Objects: people, houses, numbers, colors, baseball games, wars, ...
 - Relations: red, round, prime, brother of, bigger than, part of, comes between, ...
 - **Functions:** father of, best friend, one more than, plus, ...

Limitations of propositional logic

Propositional logic has limited expressive power

Unlike natural language

E.g., cannot say "pits cause breezes in adjacent squares"

Dexcept by writing one sentence
for each square

Example

For Example

Every dog drinks water Tommy is a dog Brain can concludes: Tommy drinks water

Example

- **For Propositional Logic**
 - P Every Dog drinks water
 - Q Tommy is a Dog
 - R Tommy drinks water

But you can't go inside P & Q statement so by PL you can't conclude.

Example

- For Propositional Logic
 - P Every Dog drinks water
 - Q Tommy is a Dog
 - R Tommy drinks water
- you can't go inside P & Q statement so by PL you can't conclude.
- But You can solve by First Order Logic

FOL Syntax

Every FOL is divided by two parts

Subject

Predicate

Every FOL is divided by two parts

- Subject
- Predicate

X is an integer. Subject: x Predicate: is an integer

Pinky is a cat. Subject: Pinky Predicate: is a cat.

FOL Syntax

- A set of predicate symbols P={P1, P2, P3, ...}. We also use the symbols {P, Q, R, ...|. More commonly we use words like "Man", "Mortal", "GreaterThan". Each Symbol has an arity associated with it.
 - A set of function symbols F={f1, f2, f3, ...}. We commonly used the symbol {f,g,h,} or words like "Successor" and "sum". Each function symbol has an aity that denotes the number of argument it takes.
- A set of constant symbols C={c1, c2, c3, ...}. We often used symbols like "0" or "Newton" or "Kolkata" that are meaningful to us.

The three sets define a language L(P,F,C)

Shorthand notation

Pinky is a cat. Subject: Pinky Predicate: is a cat.

cat(x)= x is a cat cat(Pinky)

Int(x) = x is an integer

First-Order Logic

Propositional logic assumes that the world contains facts.

First-order logic (like natural language) assumes the world contains

Objects: people, houses, numbers, colors, baseball games, wars, ...

Relations: red, round, prime, brother of, bigger than, part of, comes between, ...

Functions: father of, best friend, one more than, plus, ...

Logics in General

- Ontological Commitment:
 - What exists in the world TRUTH
 - PL : facts hold or do not hold.
 - **FOL** : objects with relations between them that hold or do not hold

Epistemological Commitment:

Language	Ontological Commitment	Epistemological Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief $\in [0, 1]$
Fuzzy logic	degree of truth $\in [0, 1]$	known interval value

Syntax of FOL: Basic elements

Constant Symbols:

- Stand for objects
- e.g., KingJohn, 2, UCI,...

Predicate Symbols:

- Stand for relations
- E.g., Brother(Richard, John), greater_than(3,2)...

Function Symbols:

- Stand for functions
- E.g., Sqrt(3), LeftLegOf(John),...

Syntax of FOL: Basic elements

- Constants KingJohn, 2, UCI,...
- **Predicates** Brother, >,...
- **Functions** Sqrt, LeftLegOf,...
- **Variables** x, y, a, b,...
- **Connectives** \neg , \Rightarrow , \land , \lor , \Leftrightarrow
- **Equality** =
- $\Box \quad \textbf{Quantifiers} \quad \forall, \exists$

Universal Quantification ∀

 \forall means "for all" П

Allows us to make statements about all objects that have certain properties

Can now state general rules:

 $\forall x \text{ King}(x) \rightarrow \text{Person}(x)$

"All kings are person"

 $\forall x \text{ Person}(x) \rightarrow \text{HasHead}(x)$ "Every person has a head."

Note that:

 $\forall x King(x) \land Person(x)$ is not correct! This would imply that all objects x are Kings and are People/Person

 $\forall x King(x) \rightarrow Person(x)$ is the correct way to say

Existential Quantification 3

- □ ∃ x means "there exists an x such that...." (at least one object x)
- Allows us to make statements about some object without naming it
 - Examples:
 - Ξ x King(x)

"Some object is a king."

- **a** x Lives_in(John, Castle(x)) "John lives in somebody's castle."
- ∃ i Integer(i) ∧ GreaterThan(i,0) "Some integer is greater than zero."

Note that:

 Λ is the natural connective to use with feract

(And \rightarrow is the natural connective to use with \forall)

Nested Quantifiers

Definition: Two quantifiers are said to be nested if one is within the scope of the other.

For example: $\forall x \exists y Q(x, y)$

 \exists is within the scope of \forall

Note: Anything within a scope of the quantifier can be thought of as a propositional function.

Different combinations of Nested Quantifiers

Order of quantifiers doesn't matter $\left(\begin{array}{c} \forall x \forall y \ Q(x, y) \\ \forall x \exists y \ Q(x, y) \end{array} \right) \rightarrow \\ \exists y \forall x \ Q(x, y) \rightarrow \\ \exists x \exists y \ Q(x, y) \end{array} \right) \rightarrow \\ does matter \\ does matter \\ does matter \\ \end{array} \right)$

$\exists x[cat(x) \land I(x)]$

"Some cats are intelligent"

Proof that correct or wrong?

$\exists x[cat(x) \Box I(x)]$

"Some cats are intelligent" (From table: False) $\exists x[cat(x) \Box l(x)]$

ď

a2

q3

Alias	Animal	Intelligent
al	cat	No
a2	cat	No
a3	dog	Yes

Р	Q	$P \to Q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

∃x[cat(x) □ I(x)] This is true which is contradict of the statement

"Some cats are intelligent"

Solution:

$\exists x[cat(x) \land I(x)]$

Can you proof again?

"Some cats are intelligent" (From table: False) $\exists x[cat(x) \land I(x)]$

ď

a2

q3

Alias	Animal	Intelligent
al	cat	No
a2	cat	No
α3	dog	Yes

Р	Q	$P \rightarrow Q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

"Every student in this class has visited Africa or America"

Student(x): x is student in this class
vaf(x): x has visited Africa

vam(x): x has visited America

∀x[student(x)□ vaf(x) v vam(x]]

"Some prime number is even number"

prime(x): x is prime no
Even(x)= x is even no

$\exists x [prime(x) \land even(x)]$

"Rajiv likes Priya"

Likes(Rajiv, Priya)

Proof?

"Rajiv likes Everyone"

Rajiv likes x1 Rajiv likes x2 Rajiv likes x3

Likes(Rajiv, x1) \land Likes(Rajiv, x2) \land Likes(Rajiv, x3)

∀xLikes(Rajiv, x)

Proof?

"Everyone likes everyone"

Rajiv likes everyone

Λ

Λ

• • •

• • •

. . .

∀xLikes(Rajiv, x)

Priya likes everyone

Everyone likes Rajiv

∀xLikes(Priya, x)

∀yLikes(y, Rajiv)

 $\forall y \forall x [Likes(y, x)]$

"Someone likes someone"

Proof?

. . .

. . .

∃x ∃y Likes(x, y)

Proof?

"Someone likes Everyone"

$\exists y [\forall x Likes(y, x)]$

Proof?

"Everyone likes Someone"

Rajiv likes someone **3 x Likes(Rajiv, x)**]

...

....

∀y [∃x Likes(y, x)]

"Everyone is liked by someone"

Rajiv is liked by someone **3y Likes(y, Rajiv)**]

 $\forall x \exists y \text{ Likes}(y, x)$

"Someone is liked by everyone"

Proof?

"Someone is liked by everyone"

Rajiv is liked by everyone

∀x Likes(x, Rajiv)]

 $\exists y \forall x \text{ Likes}(x, y)$]

"Nobody likes everyone"

Which one of the following is the most appropriate logical formula to represent the statement? "Gold and silver ornaments are precious".

The following notations are used:

G(x): x is a gold ornament

S(x): x is a silver ornament

P(x): x is precious

(A) $\forall x (P(x) \rightarrow (G(x) \land S(x)))$

(C) $\exists x ((G(x) \land S(x)) \rightarrow P(x))$

(B) $\forall x ((G(x) \land S(x)) \rightarrow P(x))$ (D) $\forall x ((G(x) \lor S(x)) \rightarrow P(x))$

Thank you!

Any Questions?